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We define an activity-dependent branching ratio that allows comparison of different time series X,. The
branching ratio b, is defined as b,=E[ &,/x]. The random variable £, is the value of the next signal given that
the previous one is equal to x, so &.={X,,|X,=x}. If b,>1, the process is on average supercritical when the
signal is equal to x, while if b, <1, it is subcritical. For stock prices we find b,=1 within statistical uncertainty,
for all x, consistent with an “efficient market hypothesis.” For stock volumes, solar x-ray flux intensities, and
the Bak-Tang-Wiesenfeld (BTW) sandpile model, b, is supercritical for small values of activity and subcritical
for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an
approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity
where b, =1, which we interpret as an indicator of critical behavior. This is true despite different underlying
probability distributions for X, and for §&,. For the BTW model the distribution of &, is Gaussian, for x
sufficiently larger than 1, and its variance grows linearly with x. Hence, the activity in the BTW model obeys
a central limit theorem when sampling over past histories. The broad region of activity where b, is close to one
disappears once bulk dissipation is introduced in the BTW model—supporting our hypothesis that it is an

indicator of criticality.
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I. INTRODUCTION

Detailed forecasting in complex systems is often difficult
if not impossible. Nonlinear processes as well as long-range
spatial and/or temporal correlations can render a direct, re-
ductionist approach futile. Furthermore, in many cases of
interest, controlled laboratory experiments are unfeasible.
For instance, stock market data or solar x-ray flux can only
be obtained under specific conditions set by the system itself,
and observing the time series under various controlled con-
ditions is not possible.

Testing the efficient market hypothesis (EMH) presents a
clear example of this difficulty. Roughly speaking, the EMH
states that asset prices are inherently unpredictable [1-3] or
that the market is hard to beat [4]. There are many flavors of
the EMH. The weak EMH states that the market is efficient if
agents only have information about the time series of market
prices. The strong EMH, on the other hand, states that the
market is efficient when agents have access to all relevant
information that could affect prices; this includes, e.g., in-
sider trading.

Mathematically the weak EMH can be formulated in
terms of a martingale property for the time series of prices
[5]. In its simplest form, a stochastic variable, X,, is said to
be a martingale if the expectation of its next value given its
entire past is equal to its current value, or
E[X,.1]X,,...,X]=X, for all t. Empirically, it is not possible
to obtain this expectation value directly from real world time
series. In fact, the existence of EMH in any of its forms is
highly disputed [6,7].

For a Markov process, the value that X,,, takes only de-
pends on the previous value X,. Indeed a necessary but not
sufficient requirement for any stochastic process to be a Mar-
tingale is that E[X,,|X,]=X,. One example is the critical
Galton-Watson (GW) branching process [8]. Starting with a
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single node, X,=1, each node independently produces a
number of offspring that is Poisson distributed with mean b.
Here b is called the branching ratio. If b=1 the process is
critical and is also a Martingale, since E[X,|X,,....X,]
=E[X,,, |Xt]=bXt'

If the underlying probability distribution used to evaluate
the expectation value E[---] is not known, or if the nodes
interact with each other in generating offspring, one can still
empirically measure an activity-dependent branching ratio
as b,=FE[£,/x]. Here the random variable &, is the value of
the next signal given that the previous one is equal to x or
&={X,,1|X,=x}. We interpret &, as the set of outcomes of an
interacting branching process with a current population x.
Empirically the expectation value E[£,/x] is an average over
all times ¢ when X,=x. If b,=1 the process is on average
critical when the activity is equal to x. If b, >1, it is super-
critical and if b, <1 it is subcritical. Note that we are not
making any assumptions that the processes we measure are,
in fact, Markovian. The measured branching ratio b, is an
average over all observed histories leading to a population of
size x.

We use the activity-dependent branching ratio b, to com-
pare and contrast time series from stock markets, a physical
system (solar x-ray flux) and a model [the Bak-Tang-
Wiesenfeld (BTW) sandpile]. Previously, time series of ac-
tivity in the BTW sandpile have been compared in detail
with that of solar flux—finding a number of similarities [9].
Our analysis finds similarities as well as significant differ-
ences in these two systems.

We find that b, is statistically indistinguishable from unity
for time series of stock prices as well as for the Dow Jones
industrial average, consistent with the weak EMH. On the
other hand, stock volumes, x-ray flux and activity in the
BTW model all show roughly similar behavior: b, decreases
from a supercritical value at low levels of activity to a sub-
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FIG. 1. (Color online) The branching ratio b, vs price for dif-
ferent stocks. The x axis has been scaled by the mean price. All data
shown have a resolution of one minute, where the price used is that
at the start of the minute. Error bars in this and subsequent figures
indicate one standard deviation. The data for qqqq were taken over
the period 09:30 23/05/08-13:37 20/06/08, the data for csco are
from 09:30 23/05/08-13:37 20/06/08, the data for aapl are from
9:30 27/05/08-14:08 23/06/08, and the data for F are from 09:30
27/05/08-14:03 23/06/08. These results are consistent with the
weak EMH.

critical one at large values. This indicates a general tendency
for the activity to return to a characteristic value, which is
not present for stock prices. For stock volumes, the branch-
ing ratio has a relatively strong dependence on activity,
by~ (VI{V))~® with a=0.69. Solar x-ray flux and activity in
the BTW model both show a broad range of activity where
the branching ratio is close to one. This broad range in-
creases with the system size for the BTW model and disap-
pears once bulk dissipation is introduced, suggesting that it is
an indicator of criticality.

We also compare and contrast the probability distributions
P(&,/x) at particular values of activity x in these systems.
For the BTW model, this distribution is well-described by a
Gaussian for x sufficiently larger than 1. On the other hand,
for both stock volumes and flux intensities, P(£./x) is
broader than Gaussian. The marginal distribution of flux in-
tensities P(I) is well-described by a power law, while for the
BTW model the distribution of activity P(n) is approxi-
mately exponential with a correlation length that grows with
system size.

In Sec. II, we present results for the branching ratios de-
termined from analyses of time series for stock prices and for
stock volumes considering four different stocks as well as
the daily Dow Jones average. Section III presents results for
solar x-ray flux data. Section IV contrasts and compares re-
sults for the canonical BTW model with variants (a) includ-
ing bulk dissipation—making the model subcritical, and (b)
having periodic boundary conditions, which leads to noner-
godic behavior. We also discuss how our activity-dependent
branching ratio differs from the average branching ratio for
avalanches in self-organized critical (SOC) systems previ-
ously discussed in the literature (see, e.g., Refs. [10,11]).
Section V contains a discussion and summary of the main
results.

II. STOCK MARKET

Does knowledge of the current price or volume of trade
for a particular stock or market index allow one to make
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FIG. 2. (Color online) Same as Fig. 1 for the Dow Jones indus-
trial average. The data are from 01/10/1928-23/05/2008, and has a
resolution of 1 day using the opening price. The behavior is also
consistent with the weak EMH.

predictions about the next value? For prices the answer is no,
while for volume of trade the answer is yes, as discussed
next.

We analyze one minute resolution data for four different
stocks from [12] for intervals of 28 days. We also examine
one day resolution data for the Dow Jones over 80 years
from [13]. Both price &={P(t+1)|P(1)=P} and volume
E={V(t+1)| V(t)=V} are studied.

Figure 1 shows the activity-dependent branching ratio
b,=E[£,/P] vs P/(P) for four different stocks. The same
quantity for the Dow Jones is shown in Fig. 2. The symbol
(-++) indicates an average over the observation time. For all
price time series studied b,=1 within statistical uncertainty.
These data are binned such that there are at least 500 points
in each bin, and the error bars indicate one standard devia-
tion.

The activity-dependent branching ratio for volume, by,
has a strong dependence on volume as shown in Fig. 3. For
small values the stocks behave like a supercritical branching
process, while for large values they are subcritical. Hence the
volume has a tendency to return to roughly its mean value. In
fact, by has an approximate power-law dependence on V,
with by~ (V/{V))~®. The exponent a=0.69 for three of the
stocks shown in Fig. 3 but appears to be smaller (or nonex-
istent) for the Apple stock (aapl), which also has a more
limited variation in volume, precluding any firm conclusion
about scaling. We have also analyzed this quantity for differ-
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FIG. 3. (Color online) Activity-dependent branching ratios for
stock volumes during the same time period as in Fig. 1. A line with
slope m=—-0.69 is included as a guide for the eye. The behavior of
the Apple stock (aapl) appears to deviate from the other three.
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FIG. 4. (Color online) Comparison of cumulative distribution
function (CDF) P(¢,/x=b) for stock volumes and solar intensities
at a given value of activity x. For stock volumes, (f) Ford was used,
and the CDFs calculated at x=V/(V)=0.2%0.05 (supercritical
region) and x=V/(V)=2*1 (subcritical). For solar intensities the
entire time series, “All,” was used, and the CDFs calculated
at x=1/{I)=0.1%0.005 (supercritical) and x=1/{I)=100= 10
(subcritical). The Ford CDF at x=0.2*+0.05 is compared with a
Gaussian having the same mean and variance. The distributions are
broader than Gaussian in all cases.

ent time windows (data not shown) and the results for the
individual stocks do not vary in any substantial way. The
data for the Dow Jones volumes (not shown) are too noisy to
draw definite conclusions.

For a given level of activity, the probability distribution
P(&,/V), also differs significantly from that for prices
P(&p/ P). For prices we find results similar to that found in
Ref. [14], who analyzed price changes for different time in-
crements over all prices. In our case the data (not shown) are
much noisier since we fix both the initial value of price, as
well as the time interval (one minute). For stock volumes and
solar intensities, the cumulative distributionps P(&,/V=b) at
a given V and P(&/1=D) at a given I, are both broader than
Gaussian as shown in Fig. 4.

III. SOLAR X-RAY FLUX

Solar flares are bursts of radiation that occur in the solar
corona. These bursts can reach sufficiently high energies to
pose a risk to astronauts, spacecraft, or airplanes following
polar routes. In addition they exhibit a number of empirical
features associated with SOC [9,15-19]. For instance, the
distribution of event durations and quiet times is a power law
for both solar flux and the BTW sandpile [9], once physically
relevant detection thresholds are taken into account to com-
pare these time series on an equal basis. Our analysis shows
that the dependence of the branching ratio on activity is simi-
lar in the two cases although the underlying probability dis-
tributions for activity (X,) and for subsequent conditioned
activities &, are different.

We examine time series in the 1-8 A range obtained
from the Geostationary Operational Environmental Satellites
(GOESs), at the “space physics interactive data resource”
[20]. A time series of five minute intervals from 01/01/1986
to 30/04/2008 was obtained from GOES satellites 5-12.
When data from multiple satellites were available the aver-
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FIG. 5. (Color online) Activity-dependent branching ratios for
solar flux intensity at solar minimum, solar maximum, and for the
entire data set, “All,” as defined in the text. This shows a weak
tendency to return to a typical value although b;=~1 for a broad
range of intensities, /. This behavior is comparable to that shown
for the SOC BTW model in Fig. 7.

age of the available data was used. The time series spans
approximately  two solar  cycles. Data  from
10°~3 X 10° min were taken to correspond to a solar
maximum, and the portion from 4 X 10°~6X 10° min to a
solar minimum.

Only values of I>1,=3X 10" W/m? were used when
computing statistics. This value is close to the detection
threshold of the satellites. In order to make a comparison
with the BTW data the solar x-ray intensities were divided
by I,. This transforms the minimum possible value in both
data sets to 1.

The behavior of b; is qualitatively similar to by, as shown
in Fig. 5. The branching ratio decays from supercritical to
subcritical as [ increases. However, unlike by, b; is close to
one over a broad range of intensities, so the tendency to
return to a characteristic value is much weaker for flux in-
tensities than for stock volumes. This broad range where
b=1 is also a property of the SOC BTW model as shown in
the next section. It disappears once bulk dissipation is intro-
duced into the BTW sandpile; hence we interpret this broad
range as a signal of critical behavior.

Despite this close similarity, the BTW model and solar
activity drastically differ with respect to the distribution of
activity, P(X,), and the distribution of (£,/x) at a given ac-
tivity. As shown in Fig. 6, the probability distribution func-
tion for flux intensities P(I) is broad with a tail that is con-
sistent with a power law with exponent =2.3. On the other
hand, the probability distribution of activity P(n) in the BTW
sandpile, shown in Fig. 8, is close to, but not exactly, expo-
nential. In addition the cumulative distribution function
P(&/I=b) at a given level of activity I is broad as indicated
in Fig. 4. This contrasts with the BTW model, where the
distribution P(&,/n) at a given level of activity, n, is Gauss-
ian (see Fig. 9).

IV. BTW SANDPILE MODELS

The BTW sandpile model [21] is the paradigmatic ex-
ample of SOC. SOC describes slowly driven, dissipative sys-
tems that reach a critical state without fine tuning param-
eters. The BTW model depicts a system that is externally

016109-3



MARTIN, SHREIM, AND PACZUSKI

10’ ~
107 1
ol 107 J 1
x 10°° = Solar Min |
= g “#Solar Max
10 <Al 1
10 —yx23 ]
10’ 10° 10° 10* 10°

3% 107°

FIG. 6. (Color online) The probability distribution function of
solar x-ray intensities, P(I). The straight line indicates a power-law
fit with exponent 2.3 for the “All” time series. This is different from
the approximately exponential behavior seen in the SOC BTW
model as shown in Fig. 8.

driven to a local dissipative instability whereupon it
“topples.” This toppling can induce further topplings, which
can lead to cascades of activity propagating through the sys-
tem. These cascades are called avalanches. In the steady
state, the BTW model reaches a stationary state where the
distribution of avalanche sizes is broad with no natural scale
other than the size of the system [21,22].

A. Self-organized critical BTW model

The SOC BTW sandpile model is composed of an L XL
lattice with open boundary conditions, where each site is
assigned a height z. The height of a stable site is an integer
between 0 and 3. A site with a value z>3 becomes unstable
and topples by adding a grain to each of its four nearest
neighbors, thus decreasing its height by four. If a boundary
site topples, it throws some grain(s) out of the system. Ini-
tially the sandpile is empty and z=0 for all lattice sites. The
system is driven by adding a grain to a randomly chosen site.
Then all unstable sites are updated in parallel and the time
unit is increased by one. This continues until all sites are
stable. Then another grain is added and the process is re-
peated ad infinitum. We start collecting statistics after the
average number of grains in the pile becomes stationary. A
time step corresponds to one parallel update of all lattice
sites or to the addition of a single grain, whichever is the
case.

At every time step, ¢, we record the number of toppling
sites, n,. We define an activity-dependent branching ratio
b,=E[n,,,/n|n,=n], as the fraction of sites that topple in a
time step immediately following one where n sites topple.
We have numerically simulated the BTW model on lattice
sizes ranging from L=100 to L=6000 to study finite size
effects.

Figure 7 shows b, vs n/{(n) for various system sizes for
the SOC BTW model. The behavior is qualitatively similar
to that for solar flare intensities, and for stock market vol-
umes. The range of n where b,, is close to one increases with
system size L. The subcritical region occurs for large n as a
result of dissipation at the boundaries, which limits the maxi-
mum size of n. This means that after a large toppling event
the system is more likely to undergo a smaller one and
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FIG. 7. (Color online) Activity-dependent branching ratio for
the SOC BTW model for different system sizes, L. Error bars are
smaller than symbol size. As the system size increases, the region
where b,~1 broadens. The entries beginning with D denote the
dissipative BTW model. The dissipative “D-BTW” model does not
show a broad region where b, ~ 1.

b,<1. We attempted a finite size scaling analysis, which did
not give compelling results. This is consistent with previous
results indicating that the SOC BTW model does not obey
finite size scaling [23,24].

Figure 8 shows the probability distribution P(n), which
has an approximately exponential decay. This differs from
the comparable result shown in Fig. 6 for the solar x-ray
intensity. Hence, the behavior exhibited by b, is robust for
systems that have markedly different distributions for activ-
ity. As shown in Fig. 8, we attempted a finite size data col-
lapse of the distribution of activity, but this collapse shows
systematic deviations. However, it is clear that for the distri-
butions the correlation length increases with system size,
leading to a broadening distribution of activity in the large L
limit for the SOC BTW model.

We examined the probability distribution, P(§,/n) for
various values of n. For n sufficiently larger than one, the
distribution is well-described by a Gaussian. Figure 9 shows
the distribution function for three values of 7 in a system of
size L=500, one in the supercritical regime and two in the
subcritical one. Figure 10 shows that the variance of the
random variable &, increases linearly with n. Gaussian be-
havior with a variance that grows linearly with n indicates
that the activity in the BTW model obeys a central limittheo-
rem: when sampling over prior histories, for each n the ac-
tivity is the sum of n independent random processes.

B. Dissipative BTW model

We analyze a BTW model that includes bulk dissipation
to test how criticality affects the activity-dependent branch-
ing ratio. The model is similar to the SOC BTW model ex-
cept it also includes bulk dissipation [25]. When a site
topples all its grains are removed from the system with prob-
ability p,, and with probability 1-p, the normal toppling
rule applies. Figure 7 compares the branching ratio for the
dissipative BTW model with p,=1072 to the SOC version. It
shows that the broad region where b,, is approximately equal
to one disappears once dissipation is introduced.

C. BTW model with periodic boundary conditions

We also studied the BTW model with periodic boundary
conditions, so that no grains are ever thrown out of the sys-
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FIG. 8. (Color online) The probability distribution for activity in
the SOC BTW model, P(n). Error bars are smaller than symbol
size. The decay is approximately exponential. The best data col-
lapse of the tail of the distribution is obtained by rescaling with L2,
Since the SOC BTW model does not exhibit finite size scaling this
rescaling is only for the purpose of plotting all the data together.

tem. As grains are added, an infinite avalanche eventually
occurs. We only examine statistics of the infinite avalanche.
This corresponds to a fixed energy sandpile, which have been
previously studied in [26-29]. In our analysis, an avalanche
that lasts more than 9 X 107 parallel update steps is consid-
ered to be infinite, and we only collect statistics during the
infinite avalanche.

Figure 11 shows the time series n, for four infinite ava-
lanches during 6000 time steps. The figure shows that n, is
periodic and not ergodic, as was previously noted in, e.g.,
Ref. [29]. For each realization of the infinite avalanche the
dynamic range of n is small compared to the SOC BTW
model. Moreover, the system is sensitive to initial conditions.
We tested this sensitivity to initial conditions by starting the
lattice empty, or by randomly initializing each site to a value
of 0 or 1. The initial condition affects both the period, and
the amplitude of oscillations of the infinite sized avalanche.
Similar results were also obtained by simply keeping the
same initial conditions and changing the seed of the random
number generator used. Changing the seed alone was enough
to similarly affect the period and amplitude of oscillations.
All these results imply that the BTW model with periodic
boundary conditions is not ergodic and cannot be compared

15
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<
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2

FIG. 9. (Color online) Probability distribution function P(&,/n)
for the SOC BTW model. Error bars are smaller than symbol size.
The distribution is shown for n=15, 150, and 450 with L=500. The
system for n=15 lies in the supercritical region, while for n=150
and n=450 it lies in the subcritical region. In all cases the distribu-
tions are indistinguishable from Gaussian.
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FIG. 10. (Color online) The variance of the random variable &,,

a2(&€,)/n vs n for three different system sizes. The ratio goes to a
constant for large n. Hence the variance of &, grows as n.

to the other systems studied here in a meaningful way.

D. Previous definitions of the branching ratio

The activity-dependent branching ratio defined in this pa-
per differs from the average branching ratio measured in
[10,11]. The previously defined ratio was not conditioned on
activity but rather defined as the average activity, over all
avalanches, resulting from a single toppling. Indeed it was

shown that this average branching ratio b=1-1/(s), where

(s) is the average avalanche size. Hence b is not an indepen-
dent quantity, and is always, by definition, less than or equal
to 1, as long as the average avalanche size is finite. Our
activity-dependent branching ratio is not restricted to situa-
tions where an avalanche can be well-defined or one can
identify individual sites for activity. In addition it gives an
overall picture for how the system behaves at different levels
of activity, unlike the average in Refs. [10,11], which sums
over all observed levels of activity.

V. DISCUSSION AND CONCLUSIONS

In this paper we presented an activity-dependent branch-
ing ratio, b,, and use it to analyze different time series, X,,
arising in physical, economic, and model systems. We found
that stock prices have a branching ratio indistinguishable

0 1000 2000 3000 4000 5000
t(parallel updates)

FIG. 11. (Color online) Time series of activity n, for different

initial conditions for the BTW model with periodic boundary con-

ditions. This displays different oscillatory behaviors for different
initial conditions. In each case a system of size L=500 was used.
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from unity over for all observed prices. This observation is
consistent with the weak efficient market hypothesis. Con-
versely, stock volume, solar x-ray flux, and the self-
organized critical BTW model exhibit supercritical branch-
ing ratios for small levels of activity and subcritical ratios for
large ones. This indicates a tendency for these systems to
return to a characteristic value. This tendency is most pro-
nounced for stock volumes which show a trend consistent
with power law with exponent =0.69, for three out of four of
the stocks examined. It is not yet clear what separates the
Apple stock in our analysis from the other three, or what the
source of the apparent scaling is. Solar x-ray flux, and the
BTW model both show a broad region where the activity-
dependent branching ratio b,~ 1. When bulk dissipation is
introduced into the BTW model this broad region disappears,
supporting our hypothesis that this is a signature of
criticality.

PHYSICAL REVIEW E 81, 016109 (2010)

The BTW model and solar x-ray flux show this similarity
despite having different underlying probability distributions
for X,. For solar x-ray flux the distribution of flux intensities
is consistent with a power law with exponent =2.3, while for
the self-organized critical BTW model the distribution of ac-
tivity P(n) has an approximately exponential decay, with a
correlation length that grows with system size.

We also found that the variance in activity o>(£,) scales
linearly with n for the BTW model, and the distribution of
subsequent activity is Gaussian at a fixed n. This indicates
that the BTW model obeys a central limit theorem when
sampling over past histories. It remains to be seen if this last
result can be derived theoretically.
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